# Machine Learning Crash Course Samuel Taylor





# Machine Learning Crash Course Samuel Taylor

## This talk is

#### This talk is not

- An introduction to machine learning
- Friendly to newcomers
- Helpful to experienced people (I hope)
- Oriented toward application
- Respectful of theory

## This talk is

- An introduction to machine learning
- Friendly to newcomers
- Helpful to experienced people
- Oriented toward application
- Respectful of theory

# This talk is not

- Going to turn you into a data scientist
- The end-all, be-all, entirely comprehensive reference on statistics, artificial intelligence, big data, and machine learning
- A detailed tutorial or guide to implementation

## Agenda

- Introduction to machine learning
- Use case 0: credit card applications (practice)
- Use case 1: teach a computer sign language
- Use case 2: forecast energy usage in Texas
- Use case 3: use machine learning to find your next job
- Wrap up

# Machine learning?

- Classification
- Regression

#### Unsupervised

• Clustering

#### Other stuff

• Reinforcement

#### • Classification

• Regression

Unsupervised

Clustering

#### Other stuff

Reinforcement

- Classification
- Regression

Unsupervised

• Clustering

#### Other stuff

• Reinforcement

| Age  | Net worth | Given credit? | \$       |   |     |   |  |
|------|-----------|---------------|----------|---|-----|---|--|
| 12.5 | \$500M    | No            |          |   |     | + |  |
| 50   | \$250M    | No            | the last |   | t   | + |  |
| 97   | \$90K     | No            | en l     | - |     | + |  |
| 50   | \$750M    | Yes           | ta       |   | _   |   |  |
| 53   | \$650M    | Yes           | X        |   |     |   |  |
| 60   | \$500M    | Yes           | 20       |   |     |   |  |
| 62   | \$800M    | Yes           |          |   | Age |   |  |









# Regression











- Regression
- Classification

#### Unsupervised

• Clustering

#### Other stuff

Reinforcement





- Regression
- Classification

Unsupervised

• Clustering

#### Other stuff

• Reinforcement

## Machine learning

- Goal: Find *f*(*x*)
- Problem: *f*(*x*) is unknown
- But: we can measure some points from f(x)
- Algorithms to find a g(x) that approximates f(x)

# **UC0:** Handle an application for a credit card

- What's the problem?
- What does the data look like?
- What kind of ML problem is this?
- Solution
- Lessons learned

- What's the problem?
  - Should we (the bank) give this consumer a credit card?
- What does the data look like?
- What kind of ML problem is this?
- Solution
- Lessons learned

- What's the problem?
- What does the data look like?
- What kind of ML problem is this?
- Solution
- Lessons learned

| Age  | Net worth | Given credit? |
|------|-----------|---------------|
| 12.5 | \$500M    | No            |
| 50   | \$250M    | No            |
| 97   | \$90K     | No            |
| 50   | \$750M    | Yes           |
| 53   | \$650M    | Yes           |
| 60   | \$500M    | Yes           |
| 62   | \$800M    | Yes           |

- What's the problem?
- What does the data look like?
- What kind of ML problem is this?
- Solution
- Lessons learned

## **UC0:** Solution

• LinearSVC (sklearn)



# How accurate is it?

# Measuring Error



# Measuring Error



## Measuring Error

• Hold out some "testing data"


### **Measuring Error**

- Hold out some "testing data"
- Compare test data to prediction
- Ideally: calculate the real cost of an error
  - Cost of false positive in nuclear warhead detection: HIGH
  - Cost of false positive in fingerprint recognition on my phone: **SIGNIFICANTLY LOWER**

### Measuring Error

- Compare test data to prediction
- Common metric for regression: mean squared error
  - o **18.35**

| -5       | 0 | 1. | I.     |   | ••• True value<br>••• Prediction |    | Input | True   | Predict | Diff  | Sq. diff |
|----------|---|----|--------|---|----------------------------------|----|-------|--------|---------|-------|----------|
| -10      | • |    | •<br>• | • |                                  |    | 0.53  | -8.10  | -1.51   | -6.60 | 43.50    |
| -15      | - |    |        | • | -                                |    | 4.74  | -8.47  | -9.60   | 1.13  | 1.27     |
| -20      | - |    |        |   | •                                |    | 5.79  | -16.45 | -11.62  | -4.83 | 23.30    |
| -25<br>( | ) | 2  | 4      | 6 | 8 1                              | .0 | 9.47  | -21.01 | -18.70  | -2.31 | 5.34     |

### **Measuring Error**

- Compare test data to prediction
- Common metric for classification: mean classification error

o **0.25** 



| Input | True | Predict | Error? |
|-------|------|---------|--------|
| 0.53  | 1    | 1       | 0      |
| 3.68  | 1    | 1       | 0      |
| 5.26  | 0    | 1       | 1      |
| 7.89  | 0    | 0       | 0      |

### UC0: Lessons learned

- This stuff is pretty neat
- Testing data allows for evaluation

# UC1: Teach a computer sign language

### UC1: Teach a computer sign language

- What's the problem?
  - I don't know sign language
  - I want to communicate with deaf people
- What does the data look like?
- What kind of ML problem is this?
- Solution
- Lessons learned

#### **UC1:** What does the data look like?



#### **UC1:** What does the data look like?



#### **UC1:** What does the data look like?

| joint1_x     | joint1_y      | joint1_z     | <br>joint20_x   | joint20_y    | joint20_z    | sign |
|--------------|---------------|--------------|-----------------|--------------|--------------|------|
| -14.24845886 | -11.23913574  | 47.79299927  | <br>39.12654877 | -20.38291168 | -67.37110138 | а    |
| -14.24845886 | -11.23913574  | 47.79299927  | <br>39.12654877 | -20.38291168 | -67.37110138 | а    |
| -14.24845886 | -11.23913574  | 47.79299927  | <br>39.12654877 | -20.38291168 | -67.37110138 | а    |
| -14.66805267 | -12.86016846  | 47.25432587  | <br>39.19580078 | -18.27232361 | -68.12595367 | а    |
| -6.099303246 | 3.211929321   | -21.70319366 | <br>1.87420845  | 11.96398926  | -98.45552063 | b    |
| -5.093156815 | 2.45741272    | -22.05827522 | <br>6.529464722 | 14.67698669  | -97.91105652 | b    |
| 32.73310089  | -1.139434814  | -12.70455551 | <br>8.51625061  | 18.76667786  | -97.07907867 | b    |
| 33.09098053  | 1.941070557   | -11.63526344 | <br>10.23889732 | 31.46665955  | -93.68971252 | b    |
| -23.29023552 | -0.6312103271 | -21.13870239 | <br>14.70001984 | 23.49594116  | -95.80595398 | b    |
| 32.82236862  | -1.860855103  | -12.38504791 | <br>10.76865768 | 19.6521759   | -96.92489624 | b    |

# So... what kind of ML problem is this?

### UC1: Solution

- Choose a model
  - Split data into training, testing
  - Train a bunch of models on training data
  - Evaluate them on test data
  - Select the best one
- Build an application
  - Keyboard... not so great
  - But! It's good enough to make an educational game



### UC1: Lessons learned

- Limit scope
- Model selection
- It's more than the model

# UC2: Forecast energy load in Texas

### UC2: Forecast energy load

- What's the problem?
  - Suppose I operate a power grid
  - Have to know demand to schedule production
- What does the data look like?
- What kind of ML problem is this?
- Solution
- Lessons learned



ercot

#### **UC2:** What does the data look like?

| HourEnding       | COAST     | EAST     | FWEST    | NORTH    | NCENT     | SOUTH    | SCENT     | WEST     | ERCOT     |
|------------------|-----------|----------|----------|----------|-----------|----------|-----------|----------|-----------|
| 01/01/2018 01:00 | 11,425.98 | 1,852.66 | 2,823.41 | 1,135.36 | 18,584.34 | 3,831.65 | 9,151.19  | 1,762.47 | 50,567.07 |
| 01/01/2018 02:00 | 11,408.42 | 1,850.17 | 2,809.75 | 1,136.63 | 18,524.14 | 3,988.27 | 9,144.99  | 1,754.72 | 50,617.09 |
| 01/01/2018 03:00 | 11,405.20 | 1,858.27 | 2,797.80 | 1,135.93 | 18,532.06 | 4,076.09 | 9,141.04  | 1,747.92 | 50,694.30 |
| 01/01/2018 04:00 | 11,450.56 | 1,879.62 | 2,807.79 | 1,146.07 | 18,647.44 | 4,154.94 | 9,157.96  | 1,755.20 | 50,999.59 |
| 01/01/2018 05:00 | 11,631.34 | 1,876.48 | 2,822.99 | 1,154.19 | 19,002.10 | 4,247.45 | 9,214.33  | 1,774.85 | 51,723.73 |
| 01/01/2018 06:00 | 11,939.41 | 1,903.01 | 2,841.67 | 1,182.43 | 19,477.36 | 4,389.05 | 9,409.49  | 1,813.22 | 52,955.63 |
| 01/01/2018 07:00 | 12,268.83 | 1,961.79 | 2,854.74 | 1,212.75 | 19,984.22 | 4,512.57 | 9,647.19  | 1,860.98 | 54,303.08 |
| 01/01/2018 08:00 | 12,422.88 | 1,996.43 | 2,883.96 | 1,241.48 | 20,289.37 | 4,601.52 | 9,763.96  | 1,899.66 | 55,099.27 |
| 01/01/2018 09:00 | 12,605.15 | 2,012.83 | 2,880.94 | 1,243.86 | 20,338.61 | 4,709.23 | 9,843.84  | 1,919.42 | 55,553.89 |
| 01/01/2018 10:00 | 12,852.52 | 2,008.72 | 2,888.71 | 1,244.10 | 20,250.29 | 4,898.25 | 9,995.22  | 1,932.58 | 56,070.39 |
| 01/01/2018 11:00 | 12,915.23 | 1,956.00 | 2,862.09 | 1,217.57 | 19,996.93 | 5,017.00 | 10,061.27 | 1,922.83 | 55,948.92 |
| 01/01/2018 12:00 | 12,898.77 | 1,891.07 | 2,833.66 | 1,184.26 | 19,485.20 | 5,090.21 | 9,997.85  | 1,896.72 | 55,277.73 |
| 01/01/2018 13:00 | 12,799.62 | 1,815.91 | 2,783.86 | 1,134.71 | 18,761.46 | 5,100.90 | 9,841.93  | 1,859.40 | 54,097.80 |
| 01/01/2018 14:00 | 12,561.39 | 1,739.01 | 2,726.05 | 1,083.39 | 17,929.19 | 5,083.49 | 9,699.13  | 1,816.43 | 52,638.08 |
| 01/01/2018 15:00 | 12,276.08 | 1,691.23 | 2,677.41 | 1,050.48 | 17,300.43 | 5,100.08 | 9,579.30  | 1,773.20 | 51,448.20 |
| 01/01/2018 16:00 | 12,013.03 | 1,683.75 | 2,641.89 | 1,035.01 | 17,035.04 | 5,101.78 | 9,530.98  | 1,748.16 | 50,789.64 |
| 01/01/2018 17:00 | 12,163.41 | 1,740.98 | 2,641.47 | 1,046.39 | 17,279.86 | 5,127.03 | 9,602.77  | 1,750.39 | 51,352.32 |
| 01/01/2018 18:00 | 12,904.77 | 1,882.02 | 2,704.64 | 1,108.09 | 18,599.94 | 5,238.73 | 9,969.08  | 1,804.74 | 54,212.00 |
| 01/01/2018 19:00 | 13,557.38 | 1,987.77 | 2,857.67 | 1,158.52 | 19,778.25 | 5,451.47 | 10,332.28 | 1,881.12 | 57,004.48 |
| 01/01/2018 20:00 | 13,638.32 | 2,012.17 | 2,893.80 | 1,164.42 | 19,960.20 | 5,484.95 | 10,259.67 | 1,883.87 | 57,297.40 |
| 01/01/2018 21:00 | 13,662.92 | 2,027.70 | 2,900.22 | 1,165.08 | 20,001.50 | 5,479.91 | 10,139.78 | 1,869.85 | 57,246.96 |
| 01/01/2018 22:00 | 13,500.73 | 2,009.95 | 2,881.12 | 1,153.71 | 19,719.39 | 5,395.65 | 9,841.96  | 1,836.80 | 56,339.31 |
| 01/01/2018 23:00 | 13,104.63 | 1,945.96 | 2,831.64 | 1,122.27 | 18,993.50 | 5,250.64 | 9,373.66  | 1,779.75 | 54,402.04 |
| 01/01/2018 24:00 | 12,677.63 | 1,893.64 | 2,773.98 | 1,101.11 | 18,346.96 | 5,072.79 | 8,960.33  | 1,724.36 | 52,550.80 |
| 01/02/2018 01:00 | 12,954.54 | 1,877.85 | 2,908.41 | 1,109.40 | 18,245.55 | 5,105.51 | 7,348.84  | 1,630.07 | 51,180.17 |
| 01/02/2018 02:00 | 12,762.33 | 1,863.55 | 2,896.25 | 1,112.72 | 18,041.58 | 5,011.84 | 7,172.20  | 1,632.21 | 50,492.67 |
| 01/02/2018 03:00 | 12,672.32 | 1,870.35 | 2,903.21 | 1,121.27 | 17,954.64 | 4,964.11 | 7,093.98  | 1,640.71 | 50,220.58 |
| 01/02/2018 04:00 | 12,720.79 | 1,884.48 | 2,914.42 | 1,129.76 | 17,999.01 | 4,951.62 | 7,115.69  | 1,660.43 | 50,376.20 |
| 01/02/2018 05:00 | 12,982.67 | 1.923.42 | 2.931.03 | 1.146.11 | 18.313.72 | 4.972.13 | 7,280,40  | 1.696.70 | 51,246,18 |

#### UC2: What does the data look like?



# So... what kind of ML problem is this?

### UC2: A simple approach

- Given a day, take the average of the 5 nearest days
  - *k*-Nearest Neighbors
- Nearest = closest day number
  - e.g. 10 Apr 2018 is day #100 of 2018

### UC2: Accuracy

- Mean absolute error: ~3%
- Residuals
  - predicted actuals
  - Goal: no pattern



### UC2: Lessons learned

- Do your research!
  - Look into Prophet (Facebook) and/or CausalImpact (Google)
- Scale your features

### **UC2:** Scaling features





### **UC2:** Scaling features



### **UC2:** Scaling features





# UC3: Use machine learning to find your next job

### UC2: Forecast energy load

- What's the problem?
  - Passive job hunting
- What does the data look like?
- What kind of ML problem is this?
- Solution
- Lessons learned

|    | A                                        | В                             | C D     | E           |
|----|------------------------------------------|-------------------------------|---------|-------------|
| 1  | Title                                    | Company                       | U Link  | Sounds cool |
| 2  | Principal Software Architect - Austin    | General Electric              | /r Link | 1           |
| 3  | ASIC Power Estimation Developer (Excel-  | Encore Semi                   | /r Link | 0           |
| 4  | Memory Subsystem Verification Engineer   | Encore Semi                   | /r Link | 0           |
| 5  | Senior DevOps Engineer                   | KIBO Software                 | /r Link | 0           |
| 6  | Senior Manager of Software Engineering   | MaxPoint                      | /r Link | 1           |
| 7  | Data Analyst                             | Amherst                       | /r Link | 0           |
| 8  | Senior Data Engineer                     | Visa                          | /r Link | 1           |
| 9  | Product Development Engineer             | Advanced Micro Devices, Inc.  | /r Link | 0           |
| 10 | Systems Analyst                          | Visa                          | /r Link | 0           |
| 11 | Lead Architect - Big Data                | Farmers Edge                  | /r Link | 1           |
| 12 | Object Storage Software Engineer         | IBM                           | /r Link | 0           |
| 13 | Principal Site Reliability Engineer      | Pearson                       | /r Link | 0           |
| 14 | Senior Software Development Engineer - S | Amazon Corporate LLC          | /r Link | 0           |
| 15 | Systems Administrator I                  | University of Texas at Austin | /r Link | 0           |
| 16 | Senior Database Administrator            | Acxiom                        | /r Link | 0           |
| 17 | IT Support Representative                | Becker Wright Consultants     | /c Link | 0           |
| 18 | Software Development Engineer - Silicon  | Amazon Corporate LLC          | /r Link | 0           |
| 19 | Software Developer                       | IBM                           | /r Link | 0           |
| 20 | Sr. Product Development Engineer         | Advanced Micro Devices, Inc.  | /r Link | 0           |
| 21 | Front end developer                      | IBM                           | /r Link | 0           |
| 22 | Full Stack Software Engineer             | Indeed                        | /r Link | 1           |

# So... what kind of ML problem is this?

## **UC3:** Solution







?

|                                                 | Engi-<br>neer | web | Applica-<br>tions | sr | jr | analytics | software | data | developer |
|-------------------------------------------------|---------------|-----|-------------------|----|----|-----------|----------|------|-----------|
| Sr. Web Applications Developer - Data Analytics | 0             | 1   | 1                 | 1  | 0  | 1         | 0        | 1    | 1         |
| Jr. Software Developer                          |               | 0   | 0                 | 0  | 1  | 0         | 1        | 0    | 1         |
| Sr. Data Engineer                               |               | 0   | 0                 | 1  | 0  | 0         | 0        | 1    | 0         |
| Data data data                                  |               | 0   | 0                 | 0  | 0  | 0         | 0        | 4    | 0         |

#### (Sr. Data Engineer, sounds\_cool=True)

### (1, 0, 0, 1, 0, 0, 0, 1, 0, 1)

X = rated\_jobs['title'].as\_matrix()
y = rated jobs['sounds cool'].as matrix()

vect = CountVectorizer()
Xp = vect.fit\_transform(X).toarray()
clf = LogisticRegression().fit(Xp, y)

new job ratings = clf.predict(new jobs)

# array([0., 0., 0., 1., 0., 0., 0., 1., 0., 0.])

### **UC3:** Solution – Accuracy

- Classification error: 0.197
  - Awesome!
- But wait, it's just classifying everything as "not cool"
- Base rate for this problem is 0.197
  - No improvement


## Handling imbalanced classes

- Better error metrics
  - Precision
  - Recall
  - Confusion matrix

|             | Actual 0 | Actual 1 | Total |
|-------------|----------|----------|-------|
| Predicted 0 | 400      | 0        | 400   |
| Predicted 1 | 0        | 100      | 100   |
| Total       | 400      | 100      |       |



# UC3: End result

Job recommendations for 2017-09-03

• 2



assistant@samueltaylor.org

to sgt 👻

......

Sr. Machine Learning / Artificial Intelligence Engineer @ ClosedLoop.ai - http://www.indeed.com/cmp/ClosedLoop/jobs/Senior-Machine-Learning-f3f3a19d0d75b818

Data Engineer @ Austin Fraser - https://www.austinfraser.com/en-us/job/bbbh8350-data-engineer-1503529772/?utm source=Indeed&utm\_medium=organic&utm\_campaign=Indeed

AppSumo - Python developer @ AppSumo - https://boards.greenhouse.io/appsumocareers/jobs/738433?gh\_src=doqnew1

Back-End Developer (Python) @ Beyond - https://boards.greenhouse.io/beyond/jobs/814873?gh\_src=ebmk7v1

Senior Back-End Developer @ Beyond - https://boards.greenhouse.io/beyond/jobs/814896?gh\_src=1xoahl1

Software Development Principal Engineer - Austin, TX @ Dell - <u>https://dell.taleo.net/careersection/2/jobdetail.ftl?</u> job=17000FQB&tz=GMT-05:00&src=JB-11346

### UC3: Lessons learned

- Understand the base rate
- Simple doesn't mean ineffective

# UC3: Keep it simple, stupid

• Approximation-generalization tradeoff





# Theory

- Approximation-generalization tradeoff
- It's just easier

# Summary

- UC1: Teach a computer sign language
  - Support vector machines
- UC2: Forecast energy load in Texas
  - Time series data
  - *k*-nearest neighbors
- UC3: Use machine learning to find your next job
  - Text data; bag of words
  - Logistic regression

#### Theory

- Approximation-generalization tradeoff
- It's just easier

### Practice

- Start with simple models
  - Linear regression
  - Logistic regression

### Takeaways

# **Recommended tools**

- Supervised learning uses past examples to predict a continuous or discrete value
- Try the simplest thing that could possibly work
- Test and iterate

#### Takeaways

- Supervised learning uses past examples to predict a continuous or discrete value
- Try the simplest thing that could possibly work
- Test and iterate

# Recommended tools

- Jupyter Notebook
- Pandas
- scikit-learn

#### More resources

- Learning from Data
- Practical Business Python
- Kaggle blog
- <u>ASL Tutor</u> (more info on teaching a computer sign language)
- Use Machine Learning to Find Your Next Job



# **Samuel Taylor**

sgt@samueltaylor.org

@SamuelDataT