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What is class
imbalance?



Class imbalance



Class imbalance occurs when certain values



Class imbalance occurs when certain values
of the target variable



Class imbalance occurs when certain values
of the target variable are more common than others






Causes of class imbalance
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Recognition



RECOGNIZING IT

01 Check for it

02 Compare it

03 Use better
metrics

04 Be careful with
train/test splits

Explicitly check for it

df[ 'class'].value_counts()

negative 1546
positive 53
Name: class, dtype: int64









RECOGNITION

Compare to an incredibly simple baseline

01 Check for it
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from sklearn.dummy import DummyClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score

dumb_model = DummyClassifier().fit(X_train, y_train)
y_pred = dumb_model.predict(X_test)
dumb_accuracy = accuracy_score(y_test, y_pred) # 0.9375

fancy_model = RandomForestClassifier().fit(X_train, y_train)
y_pred = fancy_model.predict(X_test)
fancy_accuracy = accuracy_score(y_test, y_pred) # 0.9675



RECOGNITION

01 Check for it

02 Compare it

03 Use better
metrics

04 Be careful with
train/test splits

Use better metrics

Accuracy assumes all errors are equally costly
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http://www.mayfieldclinic.com/pe-braintumor.htm

Cost of mistake:
- Patient worry
- Further tests



http://www.mayfieldclinic.com/pe-braintumor.htm
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RECOGNITION

01 Check for it

02 Compare it

03 Use better
metrics

04 Be careful with
train/test splits

Use better metrics

Accuracy assumes all errors are equally costly



relevant elements

true negatives

selected elements

Wikipedia


https://commons.wikimedia.org/wiki/File:Precisionrecall.svg

relevant elements

true negatives

How many selected
items are relevant?

Precision =

selected elements

How many relevant
items are selected?

Recall =

Wikipedia


https://commons.wikimedia.org/wiki/File:Precisionrecall.svg

True positive rate

ROC curve
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ROC curves... can be used to evaluate
classifier performance when prior probabillities
and misclassification costs are difficult to

estimate a priori

— Sinha and May




RECOGNITION

Be careful with train/test splits
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RECOGNITION

01 Check for it

02 Compare it

03 Use better
metrics

04 Be careful with
train/test splits

Be careful with train/test splits
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Solutions



Gather more data




Taxonomy from Branco, Torgo & Ribeiro

Pre-processing

Special-purpose learning

Prediction post-processing
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Pre-processing
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@ Minority class
SMOTE Majority class

01 Select member of minority class
02 Find its k nearest neighbors and select one

03 Interpolate a point p% of the way between
the two points Xnew

(o selected randomly on [0, 1])

04 Repeat until desired level of balance
Xzi

imbalanced-learn



https://imbalanced-learn.org/en/stable/auto_examples/over-sampling/plot_illustration_generation_sample.html

@ Minority class
SMOTE Majority class

01 Select member of minority class
02 Find its k nearest neighbors and select one

03 Interpolate a point p% of the way between
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imbalanced-learn



https://imbalanced-learn.org/en/stable/auto_examples/over-sampling/plot_illustration_generation_sample.html
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TOMEK LINKS



UNDERSAMPLING
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UNDERSAMPLING




UNDERSAMPLING







imbalanced-learn

@ python’


https://imbalanced-learn.readthedocs.io/en/stable/

PRE-PROCESSING

4

Libraries exist



PRE-PROCESSING

+ +

Libraries exist Biases models
toward user
desires



PRE-PROCESSING

+ +

Libraries exist Biases models Changes the
toward user cost of training a
desires model



PRE-PROCESSING

+ + -

Libraries exist Biases models Changes the Can be difficult to
toward user cost of training a apply
desires model
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Special-purpose learners



class sklearn.ensemble.RandomForestClassifier(n_estimators="warn’, criterion="gini’, max_depth=None,
min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features="auto’,
max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True,
oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False, class_weight=None)

class sklearn.linear_model.LogisticRegression(penalty="I12’, dual=False, tol=0.0001, C=1.0,
fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None, solver="warn’,
max_iter=100, multi_class='warn’, verbose=0, warm_start=False, n_jobs=None, |1_ratio=None)

class sklearn.svm.SVC(C=1.0, kernel="rbf’, degree=3, gamma="auto_deprecated’, coef0=0.0, shrinking=True,
probability=False, tol=0.001, cache_size=200, class_weight=None, verbose=False, max_iter=-1,
decision_function_shape="ovr’, random_state=None)

class lightgbm.LGBMClassifier(boosting_type='gbdt', num_leaves=31, max_depth=-1, learning_rate=0.1,
n_estimators=100, subsample_for_bin=200000, objective=None, class_weight=None, min_split_gain=0.0,
min_child_weight=0.001, min_child_samples=20, subsample=1.0, subsample_freq=0, colsample_bytree=1.0,
reg_alpha=0.0, reg_lambda=0.0, random_state=None, n_jobs=-1, silent=True, importance_type="split’,
scale_pos_weight=1.0, **kwargs)

class xgboost.XGBClassifier(max_depth=3, learning_rate=0.1, n_estimators=100, verbosity=1, silent=None,
objective="binary:logistic', booster='gbtree', n_jobs=1, nthread=None, gamma=0, min_child_weight=1,
max_delta_step=0, subsample=1, colsample_bytree=1, colsample_bylevel=1, colsample_bynode=1,
reg_alpha=0, reg_lambda=1, scale_pos_weight=1, base_score=0.5, random_state=0, seed=None,
missing=None, **kwargs)



Weighting in tree models affects



Weighting in tree models affects
calculations



Weighting in tree models affects
iImpurity calculations
and prediction-time voting



Weighting in SVM’s
pushes the hyperplane away from the minority class

SVM, minority class weight: 1 (default) SVM, minority class weight: 4
b b
:. 3 . % oo o.’. . ‘:ﬁ
o) LA . o@%e % ’. ° . o@%e ...'
f% fﬁ: \..i. .“ e e .'% ., ’ﬁ: \.." °q < e e
R s-"m- oo n-,.,«-(‘\m-‘-. e
o © .‘ .,.:‘j.‘;:: %'. M .. P * -%:s"°::. $0. M M
2 : T A e g ! _‘-.‘Qa_zt‘.‘.-, .3";. e
M D e, T D e,
o3 ‘.".:'s‘,..'.‘ ‘g o0 .3 .0‘1.0“"....“ “.*.n
-. ~ N. ~. L4 ‘.‘ :n ° .0 ~ .“. ‘.. L4 .‘n
o':..'o ) ®°’ . o’:'.'o S0 ®°’
] ° °
'.'. . o .0.. . %o



Weighting In logistic regression
pushes the hyperplane away from the minority class

LogisticRegression, minority class weight: 0.1  LogisticRegression, minority class weight: 1 (default) LogisticRegression, minority class weight: 5
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Weighting in kNN changes the distance metric



Weighting In changes




When does this work?



Weighting is less effective under high imbalance



As the degree of imbalance increases...
the probability that using weighted
empirical cost minimization to counter
imbalance will be effective in reducing
bias decreases.

- Wallace et al.



Weighting is more effective with more data



[A]s the size of the training set increases,
such strategies [i.e. class weighting] will
become more effective, in general

- Wallace et al.



SPECIAL-PURPOSE LEARNERS
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Directly addresses
the issue



SPECIAL-PURPOSE LEARNERS

e .

Directly addresses Requires
the issue knowledge of
cost/benefit



SPECIAL-PURPOSE LEARNERS

+ - +

Directly addresses Requires Effective when
the issue knowledge of closer to balance,
cost/benefit with lots of data



SPECIAL-PURPOSE LEARNERS

+ — + —

Directly addresses Requires Effective when Difficult
the issue knowledge of closer to balance, (if not already
cost/benefit with lots of data supported)
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Prediction post-processing



POST-PROCESSING

Threshold selection

+ Cost-based classification



Can we make this a ranking problem?



If not: choose a threshold to optimize your metrics
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POST-PROCESSING

+ Threshold selection

Cost-based classification



POST-PROCESSING

+ Threshold selection

+ Cost-based classification
- Use ROC curve to choose a threshold (Sinha and May)
- MetaCost (Domingos)



Each point on an ROC curve refers to a threshold

for which we can calculate cost

True positive rate  0.85

False positive rate  0.05

Threshold 0.64

eeeeeeeeeeeeeeeee



Each point on an ROC curve refers to a threshold

for which we can calculate cost

Cost = p0 * cost
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Prior probability of negative class
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Each point on an ROC curve refers to a threshold

for which we can calculate cost

Cost = p0 * cost
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True negative rate (specificity)



Each point on an ROC curve refers to a threshold

for which we can calculate cost

Cost = p0 * cost
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Prior probability of positive class



Each point on an ROC curve refers to a threshold

for which we can calculate cost

Cost = p0 * cost

FalsePos

*(1-TNR) + p7 * cos 1-TPR)

*
ZLFa/seNeg (

Cost of a false negative



Each point on an ROC curve refers to a threshold

for which we can calculate cost

Cost = p0 * cost

FalsePos

*(1-TNR) + p7 * cos 1-TPR)

*
ZLFa/seNeg (

True positive rate (sensitivity)



Each point on an ROC curve refers to a threshold

for which we can calculate cost

Cost=0.1"5"0.05+09*1*0.156=0.16

A false positive is 5 times as bad as a false negative

Minority class = 10%



Pick the threshold with the lowest cost

Threshold Cost

0.64 0.16
0.89 0.24
0.91 0.86



Pick the threshold with the lowest cost

Threshold Cost

0.64 0.16
0.89 0.24
0.91 0.86



Cost-based classification is different from

special-purpose learners

/
>~ Does not modify the learning algorithm

/
>~ Can be used with (almost) any model



PREDICTION POST-PROCESSING
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Straightforward



PREDICTION POST-PROCESSING

+ +

Straightforward Usable with most
models



PREDICTION POST-PROCESSING

+ + -

Straightforward Usable with most Understudied in
models imbalanced
domains



Recommendations



PRACTICAL TIPS FOR DEALING WITH IMBALANCE



PRACTICAL TIPS FOR DEALING WITH IMBALANCE

Establish a baseline
Use AUC

BASELINE



PRACTICAL TIPS FOR DEALING WITH IMBALANCE

Provide class weights

\ CLASS WEIGHTS

(if possible)

BASELINE



PRACTICAL TIPS FOR DEALING WITH IMBALANCE

Select thresholds wisely

CLASS WEIGHTS

BASELINE



PRACTICAL TIPS FOR DEALING WITH IMBALANCE

Use random sampling

BASELINE

CLASS WEIGHTS



In almost all imbalanced
scenarios, practitioners
should bag classifiers

induced over balanced
bootstrap samples
- Wallace et al.




In almost all imbalanced
scenarios, practitioners
should bag classifiers

induced over balanced
bootstrap samples
- Wallace et al.

Random over-sampling...
Is very competitive to more
complex over-sampling
methods

- Batista et al.




PRACTICAL TIPS FOR DEALING WITH IMBALANCE

BASELINE

CLASS WEIGHTS



PRACTICAL TIPS FOR DEALING WITH IMBALANCE

Explore more expensive /m
techniques (e.g. SMOTE) m
CLASS WEIGHTS

BASELINE
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HOW ABOUT F1 (AKA F MEASURE)?

+ “F1 [is] highly biased and should be avoided for use in imbalanced datasets” -

Luque et al.

+ “F combines two values that should never be combined” - Soboroff


https://twitter.com/ian_soboroff/status/1110903162171465728

Performance loss... is quite modest (below 5%)
for the most balanced distributions up to 10% of

minority examples
- Prati, Batista, and Silva



